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LETTER TO THE EDITOR 

A complete set of integrals in non-relativistic mechanics 

K H Mariwalla 
Matscience, The Institute of Mathematical Sciences, Madras 600 020, India 

Received 17 June 1980 

Abstract. The existence, number and type of the constants of motion in non-relativistic 
mechanics are examined for different set-ups of Newton’s equations in configuration space, 
the Noetherian symmetries in the Lagrangian formulation, the Hamiltonian formulation 
and the Schrodinger equation in quantum theory and are found to be equivalent and 
exhaustive, as already known. Time-dependent constants are shown to be arbitrary, but 
nevertheless amenable to the general symmetry methods of Katzin, Levine and Mariwalla. 

Recently? there have been a number of papers investigating various types of ‘new’ 
constants of motion in non-relativistic mechanics. There has also been a proliferation 
of papers on time-dependent constants of motion. 

A few years ago, Katzin and Levine (1973, 1977) and, independently, Mariwalla 
(1975a, b, 1978, 1979a, b) gave a general procedure for investigating this problem; 
Mariwalla also gave a complete classification for a class of forces, and established a 
relation between energy conservation and dilation symmetry. The various constants 
discussed in the literature, therefore, could not be any different from the KLM 
constants. It is possible that this work has either not been seen, or has been ignored or 
misunderstood, or there may be other types of constants of motion not covered by this 
formalism. I give two alternate formulations of the problem which may appeal to 
readers more familiar with these formalisms, and show that the KLM constants 
essentially exhaust the list. 

Consider an equation of Newton’s type: f = F(x,  x; t ) .  Envisage an infinitesimal 
transformation in configuration space of the type x + x  + €6, dt + dt + e l o  (lo is in 
general not equal to dfo/dt, but otherwise a dot will denote differentiation with respect 
to t, and a = a/ax, 8 = a/aX leaving it unchanged: 

X .  8 ( f  - F )  = E [ A - $ ~  X X .  v X F +  ( A 1 i k  - X ’ A k ) a &  + A‘aF,] = 0 

A =  X A- f A =  1. X - f 6 - 2Q0X2 A = Q - f o X .  

For F = - V ~ ( X )  all but the A term vanish identically. Two cases arise. In cases where 
the symmetry admitted is an isometry of the background space (6 = a x x + b, eo = ao), 
the symmetry is a constraint on the system so that the relevant A vanishes identically 
and by d’Alemberts’ principle of virtual work ax. (f - F )  = 0; on integration, this would 
give the conservation laws of energy and momenta. When the infinitesimal symmetries 
are not isometries of background space and F = -Vq5(x) quadratic conservation laws 
given by A result. These are the KLM constants. (If F # -Vq5, then in suitable cases 

t For representative literature on the subject, see the recent papers by Gonzalez-Gascon (1980), Leach 
(1980) and Dekkar (1980). 
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constants of motion A + f ( x ,  t )  would still exist for some f.) The traceless tensor for the 
potential x 2 ,  the vector for the inverse r potential and the energy for the.potentia1 ra are 
examples of KLM constants (Mariwalla 1973, 1975a, b, 1978, 1979a, Katzin 1973, 
1977). 

Let L" = JL be a Lagrange density of the system and I the Euler-Lagrange operator; 
then 

sL" = J ( A .  I L + ~ )  R = L [ ~ + A . ; ~ L  

q .6(IL) = dSH/dt + a6L"/at 

and if Euler-Lagrange equations are satisfied 

SH = ( 4 .  ;1 - 1) SL = € A .  

For isometries, again A = 0 and SL" vanishes identically; in fact, if L has no explicit time 
dependence and is spherically symmetric then 

A . IL = -h - aoaL/at + a . (4 x 8 - q x a)L R = a .  L + a o H + b .  p .  

Thus momenta p = iL ,  L = q x p and energy H = q . p - L are conserved if the Euler- 
Lagrange equations are satisfied and L is unchanged under the relevant (space 
translation, rotation, time translation) symmetry. The A's are the KLM constants. 
Both R (d'Alembert's constants) and A are clearly Noetherian symmetries (apart from 
an 'arbitrary' additive function f such that S i  = E df/dt (Mariwalla 1978, 1979a)). 

The transformations in (Lagrangian/Hamiltonian) phase space are related to those 
of the configuration space (and its prolongations) considered above by the relevant 
conserved object, say K (  = R, A) being the generator of the infinitesimal (canonical) 
transformation. Thus in phase space (Mariwalla 1979a) 

4 + 4 + w  q+q+€V /A = -8K v = a K  

(where, for the Hamiltonian formulation, q is replaced by p ) .  
The results also hold for a curved background space. If V is the covariant derivative, 

Newton's equation reads Dq = ( 4 .  V ) q  = F ( x ) .  Its Lie derivative &(Dq-F) = h (with 
respect to 6, io) when put to zero yields as before the formula 

A = x g. V x F 

in covariant language (Mariwalla 1975a, b, 1979a). 
All these considerations merely tell us that, if integrals of motion exist, what their 

possible forms are and the relation between the corresponding infinitesimal trans- 
formations in configuration and phase spaces. They do not tell us how to find them 
(principle of Relativity of Paths). The KLM method gives a unique (up to equivalence) 
prescription for doing this. Find the automorphisms admitted by the background space 
characterised by the invariance of paths. Let S be an intrinsic geometric parameter 
along these paths and a = dt/ds. Then the system admits a vector field (5, 60) belonging 
to the automorphism group of background space, provided 

f F  + 2ioF + (40 - $)q + kQ2V4 = 0, (A) 
where k = +1 for conformal motions and zero for (projective) collineations. The 
method naturally holds also for relativisitic systems where conformal symmetries would 
arise for the paths of massless particles (Mariwalla 1975b). 

One may also express these results in the language of vector fields in a natural base. 
Let F = F .  a ,  6 = 6. a, 9 = (EF) . a where F = F ( x ) ;  then the system admits a sym- 
metry 6 if and only if the commutator [[, F] = 9= 0. For transformations involving t 
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and for curved spaces or generalised coordinates, we obtain in the prolonged space 
(Mariwalla 1979a) 

[h ,  5 ] =  &h + h .  8 h = 4 .  a+4.8+ar (=& a + q .  8 
where 

E r )  = sq h = E(D4 -F), 
The vanishing of h together with the condition (A) gives the necessary and sufficient 
conditions for the existence of symmetries and related constants of motion. In 
(Lagrangian) phase space, if we put A = p . a + v .8, then the conditions are [h, A ]  = 0, 
hA = 0 = AE. In Hamiltonian phase space (replacing 4 by p )  h =EH, A = EA and the 
conditions are 

= W, A)PB 
The additional generators leading to a non-invariance group are given by EA= 

. f A ( p .  q )  = d(A + p . p)/dt and are constants of motion for a system with a potential 
which is the negative of the one for which A is a constant of motion. The non-invariance 
groups Sp(n ; R )  and SU(4;2) for potentials x2 and r - l  arise in this way (Mariwalla 
1975a, b, 1978, 1979a). 

[h, A ]  = E, = 0 hA = 0 =AH. 

Theorem. (i) The maximal number of independent conserved objects cannot be greater 
than n 2 ( n 2 +  n in an affine scheme). (ii) The dimension of a non-invariance group is at 
most that of Sp(n ; R )  (2n2 + 3 n  in an affine scheme). The first of these follows from the 
fact that at a point one can prescribe at most n linearly independent vector fields. Thus 
for a free particle the symmetry group is SL(n + 1 ; R )  of dimension n 2 + 2 n ;  the 
equation of motion involves 2n arbitrary constants leaving n 2  constants of motion at 
most. The stability subgroup of the symmetry group of Newton’s equation is the same 
as that for symmetries in phase space (for these the KLM constant A = 0). For spherical 
symmetry, which is maximal in some sense, we obtain 3n2  - 2(n2 - n)/2 = 2n2 + n = 
dimension of Sp(n ; R). We note that the affine symplectic group on the reals is the full 
canonical group leaving the symplectic structure unchanged and gives the non-invari- 
ance group in an affine scheme (Mariwalla 1979a). 

The historyt of the time-dependent constants of motion goes back to the classical 
problem of ‘compatibility’ between certain systems of differential equations; as we shall 
see these are not in general ‘genuine’ constants of motion. For instance, for the 
equation .i = F(x,  i; t), if fl ,fz are its two linearly independent solutions (or of a ‘related 
equation’) and x(t) its general solution, then there would exist several functions 
M(x,  i, f l ,  f2, f l ,  f l  . . . ; t )  such that hi = 0. The point at issue is that x, i are in the final 
analysis to be determined as functions of time t, so that a concommitant of x, i, say a 
polynomial together with a suitable choice of time-dependent coefficients, can always 
be made time independent. All the examples discussed in the literature belong to one of 
these cases. Thus, for a harmonic oscillator, we get constants 

xcoswt- i s inwt  U X 2  + b i z  + cx. i 

where c = U = -d and U +4u = constant. One can also take a, b, c as quadratic 
functions of solutions of f+4f=  0 to obtain another quadratic integral, etc. For the 

t One may trace it as far back as Elie Cartan’s first (?) work in 1899 (Cartan 1950-5). See also Thomas 
(1952). 
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time-dependent case w = w ( t ) ,  we get by the same procedure the constants 

f i - fx  3(b+2bw2)~’+  bi’-bx.  i 

wheref+w’f= 0 and i;’+4dw2+4bhw = 0, etc. The Lewis (1968) constant also arises 
in the same manner. In any case, there is no obvious limit to the number of such 
constants, and it would clearly depend on the number of the other systems ‘compatible’ 
with the given one. Nevertheless it is possible to bring these, in a measure, within the 
ambit of the KLM scheme by considering the configuration space to be ( n  + 1)- 
dimensional space-time. This is always possible, as a free-particle Lagrangian under 
the change x + u(x, t )  takes the form 

L = gij(x, t ) i i X J  + h j ( X ,  t)X’ +f(x, t ) .  

The projectivities now are in the ( n  + 1) dimensions, and for flat space give SL(n + 
2 ;I?); accordingly, the independent constants of motion would be <(n + 1)’. In fact, 
the various theorems above will hold with the formal change n + n + 1. But from a 
physical viewpoint, as seen above, these constants would mostly be irrelevant. Their 
arbitrariness, however, is ingeniously related to the existence of gauge-inequivalent 
Lagrangians for a given equation of motion. The vector fields (5, io) generating the 
symmetries will correspondingly differ from those of the time-independent case by 
having time-dependent coefficients in place of time-independent ones (this is suggested 
by the Lagrangian above). Thus the Lewis constant would arise from (time-dependent) 
dilation symmetry and is an anologue of the energy integral. The other constants are 
similarly interpreted together with their invariance and non-invariance groups in 
(2n  +2)-dimensional phase space. 

Locally, these considerations extend to velocity-dependent equations of the type 

f + b j k i i x  + cx + vc$ = 0. 

By a coordinate change one can eliminate the quadratic terms locally on a section of 
constant Riemannian curvature: positive, negative or zero. The linear term is similarly 
eliminated locally by a change in the time parameter. The resulting equation has the 
form q”+  c (T)a , y  = 0 ,  and can be handled as above and its quantum theory set up 
unambigously. In this form one could also give a satisfactory local treatment of a 
‘coherent state representation’ of the problem (Mariwalla 1979b). 

It is amusing that these considerations on symmetries and conservation laws extend, 
mutatis mutandis, to quantum theory (Mariwalla 1975b). 

Theorem. Let M A = { $ A ~ }  denote the manifold of solution with the same energy 
eigenvalue Ea of the operator U = H - E .  Let U, = exp (icrw) be a unitary trans- 
formation such that I/IA~(X, t )  + $ A ~ ( X ’ ,  t’) exp (if(x’, t’));  then we get two possiblities. 

(i) U $  = 0 admits a symmetry U, if and only if 

O ( U * )  = 0 [U, @I* =f(x, t)(@*). 
(ii) Let 

2-0 = lim (u,Ou,l - U ) / a  = A ;  

then 04 = 0 admits a symmetry induced by U, if and only if 

X ’ + O  

[U ,  A)* = 0 ~ W A ~  = UJla,. 
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The proof consists in expanding u,O* and rearrangement of terms of first order in a, 
etc. The space-time isometries of course leave 0 unchanged, so that A = 0 in this case. 

The pure Galilean transformations, linear fractional transformations of time and the 
Trautman maps all belong to case (i) and reflect the fact that the Schrodinger equation is 
a representation of the Galilean group in the projective model of Euclidean ‘velocity 
space’. The case (ii) describes the connection between configuration space symmetries, 
symmetries of the Schrodinger operator and the degeneracy of its eigenvalues. The set 
of all (independent) operators A obtained in the above manner and which commute 
with the Hamiltonian would connect different degenerate states with each other. The 
space-time transformation U, = exp(iaw) on the other hand, is a symmetry of the 
corresponding Newtonian equation of motion. The unique importance of this result 
need hardly be stressed (Mariwalla 1975b, 1978, 1979a). 

The content of the relation between symmetries and conservation laws is found to be 
identical in the formulation of Newtonian configuration space, Lagrangian- 
Noetherian, canonical Hamiltonian and quantum-mechanical Schrodinger equations. 
The method of Katzin, Levine and Mariwalla, which also gives this unified picture, 
permits the deduction of all symmetries from geometric considerations, and clarifies the 
much misunderstood relation between symmetries in configuration and phase space, 
including the connection between the non-invariance group in phase space and 
invariance of the free Schrodinger and Newtonian equations under linear fractional 
trnasformations. The methods extend to relativity and to field theory (Mariwalla 
1975b, 1978, 1979a). 
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